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Abstract
The effects of a hypersonic field on positron channelling radiation are
considered. Anharmonic effects of the transverse potential induced by
these longitudinal fields are incorporated and the wavefunction of the planar
channelled positron is found by the solution of Dirac equation under the
resonant influence of hypersound. An expression for the resonant frequency
is estimated. The transition probabilities and the intensity of the channelling
radiation are also calculated. It is found that the anharmonic effects change the
spectral distributions considerably.

1. Introduction

Investigations of radiation emitted by relativistic e+ and e−, channelled along major
crystallographic directions, and the interaction of the channelled particle with this radiation
field itself are of great value in atomic physics and accelerator based research. The underlying
basic principle, namely that the accelerated charge should emit electromagnetic radiation, has
been discussed from the very beginning, on the basis of classical electrodynamics. Since
the oscillatory frequencies ω0 of the channelled particles are low, the corresponding energies
h̄ω0 being of the order of a few eV only, the observation of this radiation appeared to be
precluded. However, the realization that relativistic effects will shift the photon energy into
the keV or even MeV region for MeV and GeV positrons and electrons, respectively, was a
turning point. The radiation was in fact observed for the case of positrons about 20 years
ago [1]. Thereafter, channelling radiation, being an interesting radiative phenomenon as a
subject, has been investigated and reviewed by several authors [2]. Theory was formulated [3]
in the relativistic quantum mechanical framework, and the experimental confirmation was made
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initially for positrons [1] and later for electrons [4]. Apart from direct application, channelling
radiation has opened possibilities of new applications in the fields of laser physics and medicine
as a source of hard x-rays and γ -rays for nuclear pumping, and hence for possible construction
of a γ -laser. The x-rays created as part of channelling even lead to new phenomena like photon
channelling and x-ray optics [5].

The interactions of the electromagnetic fields with the lattice medium are another
interesting area of current research. A few examples of such interactive phenomena are the
well-known Cherenkov radiation and the transition radiation. The usefulness of these processes
is to extract the maximum intensity of the emitted radiation. This requires optimization
and proper understanding of the related conditions. An enhancement of radiation intensity
can be achieved by the use of resonance effects between an external field (quite often an
electromagnetic field) and the radiation process. The Dirac equation with a quasi-static
transverse potential, followed by an analysis parallel to that of Kumakhov [3] using spinor
components, resulted in the broadening of the radiation band width. Hypersonic/ultrasonic
excitations of the medium also have the ability to produce such resonance effects. Most
interestingly, this situation of ultra-relativistic positron radiation in a hypersonic wavefield
excited in the crystallographic medium has been addressed very recently [6]. The hypersonic
field results in compressions and rarefactions along the direction of propagation. In addition,
the crystal potential in the transverse space makes the particle feel a periodic potential along the
longitudinal direction. Grigorian et al [6, 7] treated this process in a harmonic approximation of
the transverse planar potential. However, a more accurate description is required to include the
actual influence of these acoustic fields on the already existing parabolic transverse potential.
As a result, the shape of this transverse potential becomes more complex, and hence the
resulting anharmonicity effects play a crucial role in the resonance process.

In the present work we investigate the influence of such anharmonicity effects due to
acoustic longitudinal hypersonic oscillations excited in the lattice on the channelling radiation.
In the next section the mathematical formulation of the process is given. The wavefunction
for the planar channelling of a positron and the frequency of radiation in a hypersonic field is
obtained in section 3. Section 4 is dedicated to the radiative transitions induced by hypersound.
The transition probabilities and the intensity of radiation are obtained in section 5. Section 6
deals with inverse radiative transitions, and finally, in section 7, some concluding remarks are
given.

2. Anharmonic effects on the wavefunction

The planar potential based on the Lindhard standard potential with slight modification [8] has
been shown to be reasonable for both dechannelling calculations [9] and channelling radiation
characteristics [10]. We continue to use this potential so that the planar potential due to both
the planes surrounding a channel can be written as

V (x) = V0x2 + V1x4 (1)

where

V0 = 4π Z1 Z2e2Ca2 Np

(l + a)3

V1 = 4π Z1 Z2e2Ca2 Np

(l + a)5

(2)

where C is the Lindhard constant (=√
3), a is the Thomas Fermi screening distance, Z1 and

Z2 are the atomic numbers of the incident ion and target atoms respectively, Np = Ndp is the
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planar density of atoms, N being the bulk density of atoms in the crystal and dp the interplanar

spacing, and l = dp

2 . The coefficients V0 and V1 are obtained by incorporating the appropriate
crystal parameters and x is the position coordinate in the transverse space, measured from the
mid-plane.

The initial investigations on channelling radiation [3] did not consider the anharmonic part
of the potential shown in equation (1). Later, the effects of anharmonicity were considered [11].
The total energy spectrum is the sum of harmonic and anharmonic contributions, which can be
written to the first order as

ε′
nE = εnE + 3

4 V1α
4(2n2 + 2n + 1) (3)

where

εnE = h̄ωE

(
n + 1

2

)
, ωE = c

√
2V0

E
and α = c

√
h̄

EωE
. (4)

The effects of the external hypersonic field on the planar potential ‘seen’ by the relativistic
positron are incorporated as [12, 13]

U(x, z) = U0 cos(ksz)+ V (x)[1 + μ cos(ksz)] (5)

where ks = 2π/λs , λs is the wavelength of the hypersonic wave, and U0 and μ are the
modulation parameters of the potential. The z-dependence of the potential arises since the
hypersonic field is propagating in the z-direction, and reflects the periodic compression and
rarefaction in the medium. Hence the equation of motion of the relativistic positron in this
external field is given by the Dirac equation:

[(E − U)2 − m2
0c4 + h̄2c2∇2]ψE (r) = 0. (6)

The above equation assumes that the spin effects are negligible; at these high energies
(>10 MeV).

Without the acoustic field, the above Dirac equation is satisfied by the wavefunction,

ψ
(0)
npy E (r) = 1√

lylz
SnE (x) exp

[
i

h̄
(py y + pzz)

]
, (7)

where py and pz are the projections of the momentum of the positron on the y-axis and z-axis
respectively, and ly and lz denote the thickness of the crystal along the y and z coordinates. SnE

are the oscillator wavefunctions, defined by

SnE =
exp
(
− x2

2α2

)
√

2nn!α√
π

Hn

( x

α

)
(8)

which satisfy the Schrödinger equation,(
− h̄2

2M

d2

dx2
+ V (x)

)
SnE = ε′

nE SnE where M = E

c2
. (9)

To find the positron wavefunction in the presence of a hypersonic field, we make the series
expansion,

ψnpy E (r) = exp

(
i

h̄
py y

) ∞∑
k=0

CknE (z)SkE (x). (10)

3
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Substituting equation (10) in (6) and using the condition |U | � E , we get

−
(

E2 − m2
0c4 − p2

yc2

2E

)
ψnpy E (r)+ Uψnpy E (r)− h̄2c2

2E

∂2

∂x2
exp

(
i

h̄
py y

)

×
∞∑

k=0

CknE (z)SkE (x)− h̄2c2

2E

∂2

∂z2
exp

(
i

h̄
py y

) ∞∑
k=0

CknE (z)SkE (x) = 0. (11)

To further simplify, we use the creation and annihilation operator representation for x as
(a + a†) α√

2
. Here a (annihilation operator) and a† (creation operator) satisfy the well-known

general relations,

aψn = √
nψn−1

a†ψn = √
n + 1ψn+1.

After some detailed algebra and simplifications, this leads to a system of recursive relation for
the coefficients CknE appearing in equation (10) as follows:

− h̄2c2

2E

∂2

∂z2
Ck +

[
U0 cos ksz + ε′

kE

(
1 + μ

2
cos ksz

)

+ μ

2
cos ksz

3

4
V1α

4(2k2 + 2k + 1)− E2 − m2
0c4 − p2

yc2

2E

]
Ck

+ 1
4μh̄ωE cos ksz[√k(k − 1)Ck−2 +√(k + 1)(k + 2)Ck+2]

+ 1
4μV1α

4 cos ksz[√k(k − 1)(k − 2)(k − 3)Ck−4

+ √(k + 1)(k + 2)(k + 3)(k + 4)Ck+4 + (4k − 2)
√

k(k − 1)Ck−2

+ (4k + 6)
√
(k + 1)(k + 2)Ck+2] = 0. (12)

The evaluation of the unknown coefficients, Ck , is carried out by expanding them in terms of
plane waves along the direction of motion of the positron (i.e. the z-axis) [6]:

Ck(z) = Ak(z) exp(iBk(z)) (13)

h̄ Bk(z) = pkE z +
∫
σk(z) dz. (14)

The values of σk are the solutions of the equation

ih̄
dσk

dz
= σk(σk + 2pkE )+ E

c2
(2U0 + με′

kE ) cos ksz (15)

and

pkE c =
√

E2 − m2
0c4 − p2

yc2 − 2Eε′
kE . (16)

Since |U | � E and ks � ωE , we can use the approximation | dFk
dz | ≈ ks |Fk | � ωE Fk

where Fk = σk, Ak , and using σk
pkE

� 1 we have

σk = −ςah(U0 + 1
2με

′
kE ) cos ksz (17)

where

ςah = E

pkE c2
.

4
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Substituting the above equations in equation (12) and rearranging, we get

i
dAk

dz
= ςah

{
exp(−iBk)

[
1

4
μωE cos ksz[√k(k − 1)Ak−2 exp(iBk−2)

+ √(k + 1)(k + 2)Ak+2 exp(iBk+2)]
+ 1

4μV1α
4 cos ksz[√k(k − 1)(k − 2)(k − 3)Ak−4 exp(iBk−4)

+ √(k + 1)(k + 2)(k + 3)(k + 4)Ak+4 exp(iBk+4)

+ (4k − 2)
√

k(k − 1)Ak−2 exp(iBk−2)

+ (4k + 6)
√
(k + 1)(k + 2)Ak+2 exp(iBk+2)]

]

+ μ

2
cos ksz

3

4

V1α
4

h̄
(2k2 + 2k + 1)Ak

}
. (18)

Also we can rewrite equation (14) as

h̄ Bk = pkE z − ςah

(
U0 + 1

2
με′

kE

)
sin ksz

ks
. (19)

Introducing the column matrix,

Â =
⎛
⎜⎝

A1

A2

. . .

. . .

⎞
⎟⎠ , (20)

equation (18) can be written in compact form

i
d Â

dz
= μĤ Â (21)

with

Ĥ =

⎡
⎢⎢⎢⎢⎢⎣

J 0 (u∗ + 6w∗)
√

2 0 v∗√24 . . .

0 5J 0 (u∗ + 10w∗)
√

6 0 . . .

(u + 6w)
√

2 0 13J 0 (u∗ + 14w∗)
√

12 . . .

0 (u + 10w)
√

6 0 25J 0 . . .

v
√

24 0 (u + 14w)
√

12 0 41J . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦
.

(22)

The above Hermitian matrix can be written in the form of recurrence relations given by

Hk+2,k = H ∗
k,k+2 = [u + (4k + 6)w]√(k + 1)(k + 2)

Hk+4,k = H ∗
k,k+4 = v

√
(k + 1)(k + 2)(k + 3)(k + 4)

Hk,k = J (2k2 + 2k + 1)

(23)

where

J = 3

8
tζahμ cos ksz, t = V1α

4

h̄

5
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and

u = (1/4)ςahωE cos ksz exp

(
iςah

(
2ωE + 3

4
t (8k + 12)

)[
z + μ

2

sin ksz

ks

])

v = (1/4)tςah cos ksz exp

(
2iςah

(
2ωE + 3

4
t (8k + 20)

)[
z + μ

2

sin ksz

ks

])

w = (1/4)tςah cos ksz exp

(
iςah

(
2ωE + 3

4
t (8k + 12)

)[
z + μ

2

sin ksz

ks

])
.

(24)

The solution of equation (21) can be written as

Â(z) = Q̂(z) · R̂ (25)

where Q̂(z) = exp[−iμ
∫

Ĥ(z) dz] = 1− iμ
∫

Ĥ (z) dz to the first order inμ, since μ is small.
The column matrix R̂ is composed of integration constants Rk , normalized by the condition

∑
k

|Rk | = 1√
lylz

.

The solution corresponding to different transverse states can be found by setting

Rk = δkn√
lylz

n, k = 0, 1, 2 . . . .

The wavefunction of the positron is then written as

ψnpy E = 1√
lylz

exp

(
i

h̄
py y

)∑
k

SkE (x)Qkn(z)

× exp

(
i

h̄

[
pkE z − ςah

(
U0 + 1

2
με′

kE

)
sin ksz

ks

])
. (26)

3. Resonant influence of hypersound

Due to the external hypersonic wave momentum h̄ks , the positron momentum pz takes three
possible values as

pz =

⎧⎪⎨
⎪⎩

pnE − h̄ks

pnE

pnE + h̄ks .

(27)

Correspondingly, equation (26) can be used to write the superposed wavefunction as

ψnpy E = ψ
(−1)
npy E + ψ

(0)
npy E + ψ

(+1)
npy E (28)

where

ψ
(0)
npy E = 1√

lylz
SnE (x) exp

{
i

h̄

[
py y + pnE z

]} [
1 − i

3

8
μ2ςaht (2n2 + 2n + 1)

sin(ksz)

ks

]
(29)

ψ
(ε)
npy E = 1√

lylz
[b(ε)n−4Sn−4,E (x)+ b(ε)n−2Sn−2,E (x)

+ b(ε)n Sn,E (x)+ b(ε)n+2Sn+2,E (x)+ b(ε)n+4Sn+4,E (x)]
× exp

{
i

h̄
[py y + (pnE + εh̄ks)z]

}
(30)

6
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with ε = ±1. During the above simplification the amplitudes are found to be

b(±1)
n−4 = μtζah

√
n(n − 1)(n − 2)(n − 3)

8ks(2ξ ∓ 1)

b(±1)
n−2 = μζah(ωE + (4n − 2)t)

√
n(n − 1)

8ks(ξ ∓ 1)

b(±1)
n = ∓ ζah

2h̄ks

(
U0 + 1

2
με′

nE

)

b(±1)
n+2 = −μζah(ωE + (4n + 6)t)

√
(n + 1)(n + 2)

8ks(ξ ± 1)

b(±1)
n+4 = −μtζah

√
(n + 1)(n + 2)(n + 3)(n + 4)

8ks(2ξ ± 1)

(31)

where ξ = 2ζahωE

ks
.

In addition to the resonance obtained earlier for the harmonic case [6], it further follows
from the above equation (31) that b(+1)

n−4 → b(−1)
n+4 → ∞ when 2ξ = 4ζahωE

ks
→ 1. Thus the

absolute values of the amplitudes of the states with pz = pnE ± h̄ks show a sudden (resonance)
increase when the wavelength λs = 2π

ks
decreases and reaches the critical value

λc
ah = π

2ςahωE
(32)

which is just half of the corresponding resonance wavelength for the harmonic case. This leads
to a variation in the intensity of the radiation, as discussed later in sections 5 and 6.

The radiation frequency obtained by the Doppler formula for the harmonic case is given
by [6]

ωh = � f i − vksς
−1
h

1 − β‖ cos θ
(33)

where

� f i = Eni − En f

h̄
.

A similar analysis to incorporate energy changes due to anharmonic effects leads to the
modified formula for frequency as

ωah ≈
� f i

[
1 +

(
3V1
4V0

)
α2(ni + n f + 1)

]
− vksζ

−1
ah

1 − β‖ cos θ
. (34)

Thus the fractional change in the radiative frequency due to anharmonicity is given by

�ω

ωh
=
� f i

(
3V1
4V0

)
α2(ni + n f + 1)− vks(ζ

−1
ah − ζ−1

h )

� f i − ζ−1
h

. (35)

One can notice from the above expression that the fractional change in the resonance
frequency → 0 in the absence of anharmonic interactions.

4. Radiative transitions induced by hypersound

Let us consider the radiative transitions of the channelled positrons that are stimulated by the
hypersound.

7
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The probability of transitions from an initial state i to a final state f is given by the
formula [14]

W f i = 4π2e2

h̄V

∑
�q

|�q|−1|�α f i · �ek |2δ(ω f i − ω) (36)

where V is the volume of the system and �q and �ek are the wavevector and polarization vector
of the photon and the matrix elements �α f i are given by

�α f i = 1

E
δσiz ,σ f z

∫
e−i�q�rψ∗

f (�r) �̂pψi (�r) d�r . (37)

After integration over y and z we have the following expression for the matrix elements:

�α f i = δσiz ,σ f zδpiy ,p f y+h̄qy [ �D(−2)
f i δpni Ei −2h̄ks ,pn f E f +h̄qz

+ �D(−1)
f i δpni Ei −h̄ks ,pn f E f +h̄qz

+ �D(0)
f i δpni Ei ,pn f E f +h̄qz

+ �D(+1)
f i δpni Ei +h̄ks ,pn f E f +h̄qz

+ �D(+2)
f i δpni Ei +2h̄ks ,pn f E f +h̄qz

] (38)

where

�D(ν)
f i = 1

E

∑
ε1,ε2

δν,ε2−ε1

∫
exp(−iqx x)F (ε1)

∗
f �̂piε2

F (ε2)
i dx (39)

where ν represents the transition between different states.

�̂piε = p̂x, piy, pni Ei + εh̄ks ε = 0,±1 (40)

F (ε)
nE =

⎧⎪⎨
⎪⎩

SnE (x) ε = 0

b(ε)n−4Sn−4,E (x)+ b(ε)n−2Sn−2,E (x)+ b(ε)n Sn,E (x)

+ b(ε)n+2Sn+2,E (x)+ b(ε)n+4Sn+4,E (x) ε = ±1.

(41)

From equation (38) we can write the probability of transition as the sum of five terms given
by

W f i =
∑
ν

W (ν)
f i , ν = 0,±1,±2. (42)

5. Angular and spectral distributions

5.1. Matrix elements

To find the matrix elements we define the vector of polarization �e1 in the plane having the
wavevector �q and the z-axis and a vector �e2 ⊥ �e1 in the plane having the axes x and y as in the
previous case [7].

�e1 = (cos θ cos ϕ, cos θ sinϕ,− sin θ)

�e2 = (− sin ϕ, cos ϕ, 0).
(43)

The summation in equation (36) can be transformed into an integral form given by

W (ν)
f i = e2

2π h̄

∫
(|�α(ν)f i · �e1|2 + |�α(ν)f i · �e2|2)|�q|−1δ(ω f i − ω) d�q (44)

where

�α(ν)f i = δσiz ,σ f zδpiy ,p f y+h̄qyδPni Ei +νh̄ks ,pn f E f +h̄qz
�D(ν)

f i . (45)

From the above equations we can notice that a hypersonic field can induce five radiative
transitions for the channelling radiation. Corresponding transition probabilities are given by
W (ν)

f i . The case ν = 0 is for channelling in the absence of a hypersonic field. Since ν = ±2 are

8
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Table 1. Photon frequencies for ν = ±1 at direct and inverse transitions.

ν

ni − n f −1 +1

+1 ω =
ωE

{
ξ

[
1+
(

3V1
4V0

)
α2(ni +n f +1)

]
+2

}
ξ(1−β cos θ) = ω′

dir ω =
ωE

{
ξ

[
1+
(

3V1
4V0

)
α2(ni +n f +1)

]
−2

}
ξ(1−β cos θ) = ω′′

dir

direct for any ξ ξ
[
1 +

(
3V1
4V0

)
α2(ni + n f + 1)

]
> 2

transition

−1 ω =
ωE

{
2−ξ
[

1+
(

3V1
4V0

)
α2(ni +n f +1)

]}
ξ(1−β cos θ) = ωinv ω = −

ωE

{
ξ

[
1+
(

3V1
4V0

)
α2(ni +n f +1)

]
+2

}
ξ(1−β cos θ) < 0

inverse ξ
[
1 +

(
3V1
4V0

)
α2(ni + n f + 1)

]
< 2 not realized

transition

forbidden (see equations (27) and (38)) we are left with only three radiative transitions induced
by hypersound.

For ν = 0 one obtains [3, 14]

�D(0)
f i ≈ −ix f i

(
� f i

c
, 0, qxβ

)
(46)

with

x f i = α

(√
ni + 1

2
δn f ,ni +1 +

√
n f + 1

2
δni ,n f +1

)
. (47)

It remains to calculate the matrix elements for ν = ±1. It is found that only transitions with
ni −n f = ±1 are allowed. Also direct transitions are possible for ξ [1+( 3V1

4V0
)α2(ni +n f +1)] >

2 and ν = ±1. Direct as well as inverse transitions are possible for ξ [1 + ( 3V1
4V0
)α2(ni + n f +

1)] < 2 and ν = −1. Table 1 shows the photon frequencies for ν = ±1.

5.2. Transition probabilities

The transition probabilities and intensities for the case ν = 0 (i.e., without the hypersonic field)
are given by [3, 14]

dW (0)
f i

d�
≈ e2ω3

E x2
f i

2π h̄c3(1 − β cos θ)4
[(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (48)

dW (0)
f i

dω
≈ e2ω2

E x2
f i

h̄c3

[
1 − 2

ω

ωm
+ 2

(
ω

ωm

)2]
(49)

dI (0)f i

d�
≈ e2ω4

E x2
f i

2πc3(1 − β cos θ)5
[(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (50)

dI (0)f i

dω
≈ 3I (0)f i

ω

ω2
m

[
1 − 2

ω

ωm
+ 2

(
ω

ωm

)2
]

(51)

where

I (0)f i = 4

3

e2ω4
Eγ

4x2
f i

c3
. (52)
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We shall now analyse those transitions induced by hypersound, proceeding in the same
way as in the previous case [7].

Substituting qx = (ω sin θ cos ϕ)/c and using equations (31) and (41),

�D(±1)
f i ≈ ± ix f iμξ

8c

[ √
6t

4(2ξ ∓ 1)
+ [ωE + 6t]

(ξ ∓ 1)

]{
ξ

[
1 +

(
3V1

4V0

)
α2(ni + n f + 1)

]
∓ 2

}

×
[

1, 0,
β sin θ cos ϕ

1 − β cos θ

]
(53)

for direct transitions, and

�D(−1)
f i ≈ ix f iμξ

8c

[ √
6t

4(2ξ − 1)
+ [ωE + 6t]

(ξ − 1)

]{
2 − ξ

[
1 +

(
3V1

4V0

)
α2(ni + n f + 1)

]}

×
[

1, 0,
β sin θ cos ϕ

1 − β cos θ

]
(54)

for inverse transitions.
Performing integration over ω in equation (44) and using equations (45), (53) and (54), we

get

dW (±1)
f i

d�
≈ q(±1)

3 f i

e2ω3
E x2

f i

2π h̄c3(1 − β cos θ)4
[(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (55)

where the x f i are given by

xn,n−1 = α
(n

2

)1/2
(

1 − n
3

4

V1

V0
α2

)

and

xn,n+1 = α

(
n + 1

2

)1/2 (
1 − (n + 1)

3

4

V1

V0
α2

)

and the qs f i are given by

q(±1)
s f i

(ξ) = μ2ξ (4−s)
{
ξ
[
1 + ( 3V1

4V0

)
α2(ni + n f + 1)

]∓ 2
}s

64

[ √
6b

4(2ξ ∓ 1)
+ [1 + 6b]
(ξ ∓ 1)

]2

(56)

for direct transitions, and

q(−1)
s f i

(ξ) = μ2ξ (4−s)
{
2 − ξ

[
1 + ( 3V1

4V0

)
α2(ni + n f + 1)

]}s

64

[ √
6b

4(2ξ − 1)
+ [1 + 6b]

(ξ − 1)

]2

(57)

for inverse transitions, with b = t
ωE

.
Performing integration over the solid angle in equation (44), we get

dW (±1)
f i

dω
≈ q±1

2 f i

e2ω2
E x2

f i

h̄c3

[
1 − 2

ω

ω± f i
+ 2

(
ω

ω± f i

)2
]

(58)

10
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where

ω± f i = 2γ 2ωE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 +

(
3V1

4V0

)
α2(ni + n f + 1)

]
− 2

ξ
ν = +1

ni − n f = +1 ξ

[
1 +

(
3V1

4V0

)
α2(ni + n f + 1)

]
> 2

2

ξ
+
[

1 +
(

3V1

4V0

)
α2(ni + n f + 1)

]
ν = −1

ni − n f = +1

2

ξ
−
[

1 +
(

3V1

4V0

)
α2(ni + n f + 1)

]
ν = −1

ni − n f = −1 ξ

[
1 +

(
3V1

4V0

)
α2(ni + n f + 1)

]
< 2.

(59)

Multiplying equations (55) and (58) by h̄ω, we get the angular and spectral distribution of the
radiation intensity as

dI (±1)
f i

d�
≈ q(±1)

4 f i

e2ω4
E x2

f i

2π(1 − β cos θ)5
[(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (60)

dI (±1)
f i

dω
≈ 3I (±1)

f i

ω

ω2
± f i

[
1 − 2

ω

ω± f i
+ 2

(
ω

ω± f i

)2
]

(61)

where

I (±1)
f i = 4

3

e2ω4
Eγ

4x2
f i

c3
q(±1)

4 f i . (62)

The expression for total intensity is proportional to the power of hypersound (∼μ2).
q(±1)

4 f i � 1 for ni − n f = +1. Comparing with the results in the harmonic case [7], the
angular and spectral distributions of radiations differ by the anharmonic parameters given in
equation (56).

6. Inverse radiative transitions

Inverse radiative transitions ni − n f = −1 are excited by the hypersound. From equation (57)
it is obvious that as ξ → 1, q (−1)

4 f i � 1. This shows that there is a resonant amplification
of the channelling radiation intensity due to inverse transitions which is also an amplification
of the radiation in the harmonic case. Figure 1 shows the influence of both hypersound and
anharmonicity. The curves for a specific case ni = 0, n f = 1 are calculated using equation (61)
for inverse transitions with ν = −1, μ = 0.1 and equation (51) for direct transitions with
ν = 0((s f i )

−1 = 2e2ω3
Eγ

2x2
f i/c

3). For the sake of comparison with the harmonic case [7],
we take ξ = 1.01 and ξ = 1.03. The ratio of spectral distribution of radiation intensity in the
anharmonic case to that in the harmonic case is about 1.16, which shows that the effect of the
anharmonic term cannot be neglected.

7. Conclusions

In the present work, we have studied the effects of a hypersonic field on the positron planar
channelling radiation. The anharmonic effects (quartic term) of the interplanar transverse
potential seen by the positron have been included in the problem. The corresponding
eigenspectrum is calculated from the Dirac equation. The wavefunction of the positron gets

11
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Figure 1. Spectral distributions in the case of inverse radiative transitions at ν = −1 and ξ = 1.01
and 1.03 for harmonic and anharmonic cases and at ν = 0.

modified by these effects and changes the observable parameters like frequency and intensity
of radiation. The fractional change in the frequency of the emitted radiation from that in the
harmonic case is found to be directly proportional to the strength of the anharmonic term. We
find considerable variation of radiation intensity due to the anharmonic effects as seen from
figure 1: an increase by a factor 1.16 over harmonic case. This intensity amplification shows
that the anharmonic terms cannot be neglected.

We also find that the amplitudes (equation (31)), responsible for the intensity of the emitted
radiation, show a resonance when the hypersonic field wavelength λs approaches a value
π/2ςahωE which is exactly half of the corresponding quantity for the harmonic case. An
experimental verification of these findings on the effects of hypersonic fields on channelling
radiation is required to give impetus to further research in this exciting field.
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